
1

Chapter 1. Getting Started with Physical Computing

This is a textbook for those who wish to learn the programming basics of physical computing using the Arduino programming

software with either the Arduino Due or Teensy 3.2 development boards. The language used in this text is Arduino C, which is

based on the popular and robust C language. I assume the readers of this book are complete novices with no knowledge or

experience programming computers, building electrical circuits, or working with robots. I do assume that my readers are familiar

enough with a computer to browse the Internet, create folders, and install and run software applications.

1.1. What is Physical Computing and Why Should You Care?

Physical computing is the process by which humans write computer code that tells machines what to measure and how they

should interact with their environment. This may sound futuristic, but in fact it is commonplace. Toilets in public restrooms

now flush themselves. Thermostats are easily programmed to control the heat and air conditioning systems of buildings and

houses. Video games respond to the motion of a handheld console or the human body itself. MP3 players play music at the

touch of a button. Automobiles warn you when you are about to back into something. The list goes on and on.

Would you believe that it is possible for you to do many of these things (and more) – even if you are a complete novice – simply

by reading this book and adding a dash of your imagination! I’ve been teaching students how to program computers for over

25 years, but nothing has captured my student’s imagination like physical computing! For the past 14 years I’ve taught a physical

computing and robotics course to roughly 500 students, most of whom started with no programming or electronics experience.

Within a few months, these beginning students are able to create some fairly remarkable projects, simply by following the

lessons in this book and letting their imaginations run wild. Their projects include robots that can extinguish fires, play soccer,

draw images, play music, water gardens, drive small cars, and record scientific data in space and under the ocean. (See this

YouTube playlist (https://www.youtube.com/playlist?list=PLCAD98CAD2337E4EC) for videos of some of my student’s projects.)

Again YOU can do these things, too!

In the world of physical computing, problems are resolved with both hardware (electronics) and software (computer code)

solutions. When I was a kid growing up, physical computing was reserved for those doing research and development for huge

tech companies. People knew how to program computers and people knew how to build electronic circuits, but it wasn’t easy

(or even possible) to bridge those two worlds. Even into my college and grad school years, there were computer programmers

and there were electrical engineers, and they rarely worked together. This made me sad, because I enjoyed both disciplines.

Back then it was very difficult to get a computer to do something in the physical world, such as turn on a light, spin a motor, or

determine if a person were in the room. Then along came the embedded controller and everything changed.

Embedded controllers are small, one chip microcontrollers that control or measure some aspect

of their environment. The microcontroller, like the one shown at the right, is a remarkable device,

integrating a Central Processing Unit (CPU), Random Access Memory (RAM), Electrically Erasable

Programmable Read-Only Memory (EEPROM, pronounced “e-e-prom”), input and output (I/O)

pins, and timers into one small, self-contained unit. They are so ubiquitous in today’s high-tech

world that most people are unaware even of their existence, let alone how they work and how

one might use them. You might say that embedded controllers are hidden in plain sight.

A microcontroller can perform the same calculating and decision-making tasks as the microprocessor inside your personal

computer (albeit at slower speeds). But the microcontroller can easily do things your computer cannot do, such as turn on a

light, spin a motor, or determine if a person is in the room. In this book you will learn how to do these (and other) things.

 1

Photo credit: SparkFun

www.sparkfun.com

 Physical Computing & Robotics with the Arduino IDE – Volume One

2

Physical computing has given rise to the popular maker movement. To many, this is a sociological revolution in which regular

people are able to develop the tools to build, design, and create machines that can enhance people's appreciation of reality. It

is an exciting time to be alive because this is the first time in human history that we have this kind of control! Even though the

maker movement is on the rise and the number of embedded controllers in use today is huge, the number of people who know

how to program microcontrollers is relatively small. Why shouldn’t YOU be one of them?

1.2. The Development Environments Covered in this Book

To make the task of programming the microcontroller and integrating it with the world at large, so-called development boards

(or development environments) were created. These boards make it easy to connect wires, sensors, and actuators to the

microcontroller. There are a large number of development boards on the market. You might have heard of a couple of them,

especially the Arduino Uno or Raspberry Pi. While these are both fine boards, the ones covered in this text are the Teensy 3.2

and Arduino Due, which are shown in Figure xxx.

So why have I chosen these among the plethora of others? It boiled down to keeping the cost low, the physical size small, and

the processors powerful. For my classes, I needed devices that could control the motors of my students’ small robots, sense

their surroundings using both analog and digital sensors, while making rapid, complex calculations with a speedy processor.

It is likely that you have already decided which development environment, the Teensy 3.2 or the Arduino Due, is right for you.

I, personally, find the Teensy 3.2 is the best choice for me and my students. I find the Teensy product line from PJRC.com offers

the best combination of power, interchangeability, and connectivity at the lowest price. This makes the Teensy an affordable,

robust, and easy-to-use classroom platform.

If you have not decided which environment is right for you, a detailed look at the Teensy 3.2 and Arduino Due development

boards can be found in Section 7 at the end of this chapter. However, below is a quick break down of each development system.

The Teensy 3.2 Development Board and Patton Robotics PRT3 Motherboard

If you decide to go with the Teensy 3.2 development board, you can purchase everything you need from Patton Robotics, LLC.

The Teensy itself can be ordered with male header pins already soldered in place, as shown in Figure xxx or you can save a few

dollars by buying the kit and soldering the pins on yourself, as shown in Figure xxx. You can find these under the

Shop >> Motherboards and Controllers menu at pattonrobotics.com.

Figure xxx. The Teensy 3.2 (left) and Arduino Due (right) development boards.

Figure xxx. The Teensy 3.2 kit. The male

header pins must be soldered onto the

board by the customer.

Figure xxx. The Teensy 3.2 with header pins

pre-soldered into place.

Chapter 1. Getting Started with Physical Computing

3

Make sure you buy the Teensy 3.2, which has 28-pins and a powerful ARM processor. If you have an older Teensy, such as the

Teensy 3.0 or 3.1, nearly all of this book will work fine with your board. However, you should avoid the older Teensy 2.0, which

uses a less powerful and older AVR processor. The 2.0 development board will work for many applications discussed in this

book but not all of them.

The Teensy 3.2 is all you need to get started. In fact, it is all you need to get through the programming basics of this first

volume of this book. However, a time will come when you will want to jump into Volume Two of my text and connect a battery

pack, LEDs, buzzers, sensors, motors, etc. to your controller. When that time comes, I recommend using the Patton Robotics

Teensy Motherboard from Patton Robotics made specifically for the Teensy 3.x family. Known as the PRT3, it can be purchased

as a kit (see Figure xxx) or fully assembled without and with the Teensy microcontroller (see Figures xxx and xxx, respectively).

While you can fabricate your own motherboard using a solderless breadboard, you can’t beat the small footprint, ease of use,

and rugged dependability of the handy PRT3 motherboard!

If you already have the PRT3 Motherboard, take care to insert the Teensy with the proper alignment, as shown in Figure xxx.

Note the orientation arrow: the USB connector on top of the microcontroller should be positioned between the two switches

as shown in the image. Insert the microcontroller into the motherboard socket by pressing firmly along the microcontroller’s

edge with your thumbs. Also take care that the pins are not bent when inserting them into the socket.

The Arduino Due Development Board

If you elect to use the Arduino development board, make sure you buy the Arduino Due, shown in Figure xxx. This board is

equipped with the same powerful ARM processor as the Teensy 3.2. Be careful not to buy the more common Arduino Uno,

shown in Figure xxx, which uses the older and less powerful AVR processor. The Uno board will work for many applications

discussed in this book but not all of them.

You can purchase the Arduino Due from a number of vendors, including Maker SHED (www.makershed.com), Spark Fun

(www.sparkfun.com), Jameco (www.jameco.com), and the Arduino Store (arduino.cc/en/Main/Buy).

While I believe the Teensy 3.2/PRT3 combination is the best option for classroom instruction, this volume will also show you

how to use the Arduino Due board to act as the brain and central nervous system of your physical computing devices.

Figure xxx. The Arduino Due development

board. This board used the same powerful ARM

processor as the Teensy 3.2.

Figure xxx. The Teensy 3.2 is inserted into a

Patton Robotics PRT3 Motherboard. Make sure

the Teensy controller is inserted into the

motherboard as shown. Take care that the pins

are not bent when inserting.

Figure xxx. The Patton Robotics Teensy

Motherboard Kit. You can save a few dollars by

assembling the parts yourself. It’s fun and

educational.

Figure xxx. The fully assembled Patton Robotics

Teensy Motherboard or PRT3. Here, the Teensy

development board has not yet been inserted.

Figure xxx. The Arduino Uno development

board. Refrain from using this more common,

but less powerful, development board.

 Physical Computing & Robotics with the Arduino IDE – Volume One

4

1.3. Required Hardware for this Book

Before you can get started programming your microcontroller, you must gather the following few essential pieces of hardware.

Your Computer

To program either the Teensy 3.2 or the Arduino Due, you’ll need a computer with a USB port. If your computer runs Windows,

Mac OS, or Linux you can run the software used throughout this book.

A USB programming cable.

You will need a micro-B USB cable to serve as the programming cable between your computer and

your development board. The development board vendors sell these as well, or you can use just

about any micro-USB cable you might have around the house.

A Development Board

This book is written around both the Teensy 3.2 and Arduino Due development environments. You will need one of these

development boards before proceeding. While I believe the Teensy 3.2/PRT3 combination is the best option for classroom

instruction, this volume will also show you how to use the Arduino Due board to act as the brain and central nervous system of

your physical computing devices. To learn more about these powerful devices read Section 1.2 above and Section 1.7 below.

If you use the Teensy 3.2, I highly recommend using it in conjunction with the PRT3 Motherboard from Patton Robotics.

Robots and Peripheral Devices

You don’t need anything other than the items listed above to start reading this book and begin

writing code for your development board. However, in Volume Two of my text, I explain how the

attrition of an inexpensive breadboard and a few electronic components can turn your little

development board into a work of art. In Volume Two, I will show you how to use your

microcontroller with a variety of physical computing devices such as LEDs, buzzers, robots, sensors,

motors, and other actuators.1

Then, of course, there are robots! It goes without saying that robots are very appealing and are a

fantastic way to introduce programming, electronics, and engineering topics to students of all ages.

Over my many years of teaching, I have learned that students with access to kinesthetic tools like

robots are more likely to enjoy their programming class and will stretch themselves well beyond

their comfort zone. In my classroom every student has their own OneBot robot from Patton

Robotics, shown at the right. This durable, wheeled robot fully integrates with the Teensy 3.2/PRT3

Motherboard combo as well as any of the Arduino development boards, and it is the centerpiece of

the robot motion chapters in Volume Two of this text.

1.4. Install the Software Required for this Book

The Programming Language

Arduino is the name of the computer language used to program your development board. This book is dedicated to teaching

you Arduino, which is based on the well-established and versatile C language.

The Software or Integrated Development Environment (IDE)

The fancy name for any software used by programmers to write code is called the Integrated Development Environment, or

IDE. The programmer uses the IDE to write computer programs, which are called sketches by the Arduino community.2 Once

the computer code is written, the IDE is then used to translate the sketch into a language that is understood by your

microcontroller and uploads the translated code to your development board.

Whether you use the Teensy 3.2 or the Arduino Due, you will need to download the Arduino IDE. The Arduino IDE, which works

equally well on computers running Windows, Mac OS X, and Linux, makes programming the Arduino and Teensy boards quite

easy for just about anyone.

1 See Appendix xxx for a list of all the equipment I use in each volume of my text.
2 They are named “sketches” to appeal to the artist in us all.

Chapter 1. Getting Started with Physical Computing

5

Download the Arduino IDE

Download the latest, non-beta version of the Arduino IDE.3 (Teensy 3.2 users should read the note in the gray box below

before downloading the file.) You can find the file at Arduino’s download page:

http://www.arduino.cc/en/Main/Software

Make sure to download the version that is right for your computer system. If you are a Window’s user and you are not your

computer’s administrator, make sure you download the ZIP file for non-administrator installation.

A note to Teensy 3.2 users:

Install the Arduino IDE

After the file is downloaded, go ahead and install the Arduino IDE software.

If you are using the Arduino Due board, this is all you need to do for now and can skip to Section 1.5, below.

Users of the Teensy 3.2 development board should make note of the location of the Arduino program files, for you will soon

need to install another piece of software called Teensyduino in that same location.

3 At the time of this publishing, the most current version was 1.6.9. The download is free, but consider making a small donation.

A note to Teensy 3.2 users:

Before downloading the Arduino IDE, check out this page: http://www.pjrc.com/teensy/td_download.html, and

note which version of the Arduino IDE is supported by a piece of software called Teensyduino. In the next step you

will download Teensyduino, but for now, simply make sure that you only download a version of the Arduino IDE

that is supported by the latest version of Teensyduino.

For example, in early June 2016, Teensyduino supported Arduino version 1.6.8, but it did not support 1.6.9, as

shown by this screenshot:

Therefore, Teensy 3.2 users in June 2106 should have downloaded Arduino 1.6.8, and avoided the most recent

version of the Arduino IDE! You can find older versions of the IDE under the “Previous Releases” section of the

Arduino Downloads page.

 Physical Computing & Robotics with the Arduino IDE – Volume One

6

Download and Install Teensyduino for the Teensy 3.2

If you are using a Teensy 3.2 development board, you must download and install one more piece of software

called Teensyduino. (Again, if you are an Arduino Due user, skip to Section 1.5.)

Teensyduino is a free add-on that copies all the necessary Teensy files into Arduino, which makes it possible for Teensy users

to write and upload their code using the Arduino IDE.4 You can find this free download here:

http://www.pjrc.com/teensy/td_download.html

Once you are on the PJRC download page, Teensy users should select the appropriate file for your operating system and

download it to your computer.

Once the Teensyduino application file has been downloaded, follow the installation instructions below based on which

computer system you are using:

• If you are on a Mac, simply run Teensyduino to install the software. When the window below pops up, click on it to

run the installer. See page 7 for details about this installation.

4 Learn more about Teensyduino at www.pjrc.com/teensy/teensyduino.html.

Once again, Teensy users should make sure to only download a version of the Arduino IDE that is supported by

the latest version of Teensyduino! For example, in early June 2016, the Teensyduino website at

www.pjrc.com/teensy/td_download.html showed that Teensyduino supported Arduino version 1.6.8, but did not

support version 1.6.9. Therefore, Teensy 3.2 users in June 2016 should have downloaded Arduino 1.6.8, and

avoided the 1.6.9 version of the Arduino IDE, which was in beta testing at that time as shown:

You can find older versions of the IDE under the “Previous Releases” section of the Arduino Downloads page.

Chapter 1. Getting Started with Physical Computing

7

• If you are on a Windows-based PC, locate the “teensyduino.exe” file, which is probably in your Downloads folder. You

may need to run Teensyduino as an administrator, by right-clicking on the “teensyduino.exe” and select “Run as

administrator”, as shown in Figure xxx below. Keep reading for details about this installation.

Both Mac and PC users should see the following window once the Teensyduino installation software is opened:

Clicking the Next button opens a new window which checks to see if the USB Serial driver has been installed. It will take a

moment or two for the computer to determine if the proper USB drivers are installed. USB drivers must be installed, so click

on the Next button, which takes you to this window (PC on the left, Mac on the right):

You must install Teensyduino into the same folder as your Arduino program file! The Next button will remain grayed-

out until you locate the correct folder. It is likely that the default path will be the one you need. If not, browse to

the folder in which Arduino was installed. Mac users, try looking in your Applications or Download folders. When

this is done, press the Next button.

Figure xxx. On a Windows machine, run the Teensyduino installer by right-clicking on the file in the Downloads

folder, and selecting “Run as administrator”.

 Physical Computing & Robotics with the Arduino IDE – Volume One

8

The window that opens will ask that you select which additional libraries you want imported into the Arduino program. I

recommend that you chose to import all of them, as shown below. (Installing all of the libraries will make it super-easy to

incorporate a huge array of third party sensors and actuators into your programs.) Continue the installation process by pressing

the Next button.

In the window that appears, press the Install button to load the Teensyduino software and selected libraries. It will take a few

minutes to install everything, but when the process is complete you will see the window below. I will explain this somewhat

cryptic message to you later. For now, press the Done button and get ready to test your setup!

1.5. Setup Your Gear for the First Time

Now that all the equipment has been gathered and the software has been installed, it is time to set up the Arduino software so

it properly recognizes your development board. It doesn’t take long to do this, but you should carefully read and follow each

of the steps below.

Electrically Insulate Your Device

Warning! The underside of your microcontroller and development board is covered with little metal pins or

contacts. Before connecting the micro-USB cable to your embedded controller or development board, be sure that

your device is insulated from any metal that could cause an electrical short. Placing the board down on anything

metal can cause an electrical short that is likely to fry your board. Beware of metal tables and metallic computer

cases! Even something as small and as innocuous as a paperclip or staple could cause a short and destroy your

board, so take this warning to heart!

If you are using the Arduino Due or if your Teensy is inserted into the PRT3 Motherboard, you may want to get in

the habit of always placing it on some non-metallic surface such as wood, paper, plastic, or cardboard, as shown in

Figure xxx. My students use the Teensy 3.2 microcontroller with the PRT3 motherboard, but they do not build their

motherboards right away, so at the start of the year I have them plug their Teensy boards to a solderless breadboard

Chapter 1. Getting Started with Physical Computing

9

or simply keep them in pink static-proof plastic bags (see Figure xxx) to eliminate the possibility of an electrical short.5

If you decide to use a breadboard here, place the micro-USB socket near one end of the breadboard, as shown in

Figure xxx, so the programming cable can be inserted without putting pressure on the socket.

Connect Your Development Board to Your Computer

Plug the large end of the USB programming cable into one of your computer’s USB ports, as shown in Figure xxx. It is best if

you use the same port each time you sit down to program your development board.

Ensure your development board is not resting on anything metallic and then insert the tiny end of the programming cable into

the micro-USB slot on your development board. For Teensy 3.2 users there is only one micro-USB port from which to choose,

as shown in Figure xxx below. Users of the Arduino Due will note there are two micro-USB sockets on their board, as shown

in Figure xxx. Turning the board over you will notice the two ports are labeled “Native USB” and “Programming”, as shown in

Figure xxx. Plug your programming cable into the “Programming” port, as shown.

Be careful to get the orientation correct. The cable is supposed to fit snugly into the socket, but do not force it! Also, take

care that you do not pry the tiny micro-USB connector off of the board; the cable should be inserted horizontally!

If your development board is brand new and you have powered it up for the first time, you may see its onboard LED blinking

on and off. This is your board’s way of saying hello. (Feel free to say hello as well.)

5 See Chapter xxx for more on the solderless breadboard.

Figure xxx. Teensy users should plug the small

end of the programming cable into the micro-

USB socket on their development board.

Figure xxx. Plug the USB programming cable into the computer’s USB port.

Try to use the same port each time you program our development board

Figure xxx. Arduino Due users should plug the small end of the

programming cable into the micro-USB socket labeled “Programming”.

Figure xxx. Protect your development board by

working with it on an electrically insulating

surface such as wood, paper, or plastic. Keep the

pins underneath away from metal!

Figure xxx. To eliminate the possibility of an electrical short, you can simply place the

Teensy in an anti-static plastic bag (left). Or, if the header pins have been soldered in

place, it can be inserted into a solderless breadboard (left). Note the Teensy is placed

near the end of the breadboard so the programming cable can be inserted easily.

 Physical Computing & Robotics with the Arduino IDE – Volume One

10

If this is the first time you’ve plugged your board into this particular USB port, allow your computer a few moments

to recognize this new piece of hardware and give it time to install the necessary drivers! This may take a few

minutes, so be patient while the drivers are installed. Windows users will see a message in the system tray (similar

to the one below) stating that the drivers are being installed.

This is an important step. If you rush it, the software will not make a proper handshake with the hardware and you will have

to start over. Do yourself a favor: plug in the development board to your computer and then go grab a snack. By the time you

return, the board should be ready to program! Windows users will see another notification pop up in the system tray that the

device has been properly installed and that it is ready to be used.

If you ever plug your development board into another USB port, you will need to give the computer time to load these drivers

once again! (Hence my recommendation to always use the same USB port each time you program the device.)

Tell the Arduino IDE which Development Board You Are Using

Open the Arduino software.6 In the IDE’s programming window that opens, you should see the default sketch

shown in Figure xxx below. The sketch is practically blank, with only the bare-bones shell of a program displayed

in the code window.

6 The program name is arduino.exe for PC users, and arduino.app for Mac users.

Figure xxx. The default blank program in the IDE’s programming window.

Chapter 1. Getting Started with Physical Computing

11

Before Arduino can be used to upload and run your sketches, you must tell the IDE which development board

you are using. You will only need to do this once if you use the same development board each time. Do so by

clicking on the Tools menu, then change the Board: to your particular device:

1. Teensy 3.2 users should see the options shown in Figure xxx below. Select the Teensy 3.2 board as shown. If these

options are not available to you, walk through the steps for installing Teensyduino once again. The instructions for

doing so can be found on page 6.

2. Arduino Due users need to install some more files specifically for the Due board. Click on Tools >> Board: >> Boards

Manager, as shown below in Figure xxx.

Figure xxx. Follow these steps to tell the Arduino IDE that you are using the Teensy 3.2 development board.

Figure xxx. Follow these steps to add further installation files for the Arduino Due development board.

 Physical Computing & Robotics with the Arduino IDE – Volume One

12

In the Boards Manager window that opens, locate the package that includes files for the Arduino Due board. As shown

in Figure xxx, the required package is titled “Arduino SAM Boards”.

Clicking in the space will make visible an Install button, which is shown in Figure xxx. Select the appropriate version

of the Arduino software, then click on the Install button to install the extra files needed for the Due board.

When the files have finished installing, close the Boards Manager window and return to the Arduino IDE. Now tell the

IDE which board you are using by clicking on Tools >> Board: >> Arduino Due (Programming Port) at the bottom of

the list, as shown:

Figure xxx. Select and install the Arduino Due installation files.

Figure xxx. Find the package of installation files specifically for the Arduino Due development board.

Chapter 1. Getting Started with Physical Computing

13

Tell the Arduino IDE which Communications Port You Are Using

Next, you must tell the Arduino IDE which communications port on your computer is used to talk with your development board.

To do this, click on Tools >> Port from the IDE’s menu bar, and then select the correct port, as shown below:

This is easier said than done, for the correct port depends on which board you are using (Teensy or Due), which type of computer

you are using (PC or Mac), and which physical USB port your programming cable is plugged into. In other words, there will is a

great deal of variability here. The good news is if you use the same development board and plug it into the same USB port each

time, you only have to do this once!

Here are some general guidelines for selecting the correct port:

• For PC users, selecting the correct port is usually a straightforward process. Often the only port listed is the correct

one. The ports will be labeled with the “COM” prefix, such as COM3 or COM4. If COM1 is listed, it is probably not the

correct port. If there are multiple ports to choose from, you can always employ a trial-and-error method to find the

correct port.

Trial-and-error is not necessary for PC users. For example, if you paid attention to your computer monitor when you

first plugged in your development board, a message popped up telling you which was the active port. For instance, in

the image below, we see that my Teensy board is connected to COM port 16.

If you did not catch the message and are an administrator of your PC, you can examine the Ports (COM & LPT) section

of your computer’s Device Manager, as shown below:

 Physical Computing & Robotics with the Arduino IDE – Volume One

14

• For Mac users, this task seems to be more troublesome. On a Mac, the label is usually associated with a number. For

example, it may be listed as something similar to, “/dev/cu.usbmodem1416921”, as shown below:

For Arduino Due users on a Mac, the port label usually includes the words “Arduino Due”, such as,

“/dev/cu.usbmodem1412 (Arduino Due (Programming Port))”, as shown below:

You Know You Are Ready to Proceed When…

You will know that the Arduino software is properly installed and set up when you see the name of your development board

and the proper port number displayed on the bottom right of the Arduino IDE. For example, in the image below it is clear that

the board used is the Teensy 3.1 and it is connected to COM3. This board is ready to be used!

There is no question that Mac users have a more difficult time keeping the lines of communication

open between the computer and the development board. Often the Port menu under the Tools menu

is grayed-out. Restarting the Arduino software, unplugging the programming cable, and/or inserting

the programming cable into another USB port are all things to try if you lose your port. If these things

don’t work, try rebooting your computer.

Figure xxx. You know the software is setup properly and ready to go when the name of your development

board and the communications port is displayed at the bottom right of the Arduino IDE!

Chapter 1. Getting Started with Physical Computing

15

1.6. Test Your Gear with the Blinking LED Example Program

Now that all the equipment has been gathered and the software has been installed, you are ready to program your development

board using the Arduino IDE. Now we are getting to the fun part! However, before you begin writing code from scratch, you

should first test your connection by running a simple example program called “Blink”, which is pre-installed in the IDE. This

sample code will make the LED on your development board blink once per second.

Open the Blink Sketch

In the world of Arduino, computer programs are called sketches. There are two ways to load the “Blink” sketch into your code

window:

• One way is to select File >> Examples >> 01.Basics >> Blink from the menu bar.

• Another way is to use the Open File button (shown at the right). Click on the button

and select 01.Basics >> Blink from the drop-down menu, as shown in the figure below:

Stretch your IDE’s programming window so you can view all the coded commands for the Blink sketch. There are slight

differences in the Blink code between the Arduino Due version and the Teensy 3.2 version. I’ve reproduced both versions

below, starting with the Arduino Due version:

The Blink Code – Arduino Due Version
/*

 Blink

 Turns on an LED on for one second, then off for one second, repeatedly.

 Most Arduinos have an on-board LED you can control. On the Uno and

 Leonardo, it is attached to digital pin 13. If you’re unsure what

 pin the on-board LED is connected to on your Arduino model, check

 the documentation at http://www.arduino.cc

 This example code is in the public domain.

*/

// the setup routine runs once when you press reset:

void setup() {

 // initialize the digital pin 13 as an output.

 pinMode(13, OUTPUT);

}

// the loop routine runs over and over again forever:

void loop() {

 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

 Physical Computing & Robotics with the Arduino IDE – Volume One

16

The Blink Code – Teensy 3.2 Version
/*

 Blink

 Turns on an LED on for one second, then off for one second, repeatedly.

 This example code is in the public domain.

*/

// Pin 13 has an LED connected on most Arduino boards.

// Pin 11 has the LED on Teensy 2.0

// Pin 6 has the LED on Teensy++ 2.0

// Pin 13 has the LED on Teensy 3.0

// give it a name:

int led = 13;

// the setup routine runs once when you press reset:

void setup() {

 // initialize the digital pin as an output.

 pinMode(led, OUTPUT);

}

// the loop routine runs over and over again forever:

void loop() {

 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

Examine the Code

The commands may look intimidating at first, but in no time you’ll understand what each line means. In fact, we can take a

cursory look at the code right now:

• First, the colors of the code tells us a lot.

o Any code in gray is known as a comment statement, or simply as a comment. Comments are ignored by the

compiler and are used to make notations for the humans reading or writing the sketches.

o Any code in red or green is an Arduino command that is built into the IDE.

o Any code in blue is an Arduino keyword that has special meaning.

o Code in black is either a variable created by the user, a number (we say a numeric literal in the programming

world), or a symbol, such as a comma, semicolon, parentheses, or curly brace.

• In the Teensy version of the sketch, the first real line of the code – below all those gray comment statements at the

top – reads

int led = 13;

This statement establishes a user-defined variable named “led” (as in L.E.D., LED, or light-emitting diode) and was

assigned the value 13. This is because the 13th pin on the Teensy 3.2 and Arduino Due boards are connected to their

onboard LED lights. Programming with variables, rather than numeric literals, makes it easy decipher code, as you will

soon learn.

The Arduino version of the code does not define the led variable, but rather uses the numeric literal, 13, to represent

the LED’s pin. However, the code runs exactly the same as the Teensy version.

Chapter 1. Getting Started with Physical Computing

17

• Each sketch in Arduino must have two functions that are named setup and loop. (A function is simply a small chunk

of code than performs some task.) Allow me to briefly explain what is happening in each of these required functions:

o Within the setup function, the line of code that reads:

pinMode(13, OUTPUT);

or

pinMode(led, OUTPUT);

is used to set the mode of the led pin (i.e., pin 13) to output, so the microcontroller can output voltages, which

can turn on and off the onboard LED. (Conversely, if the mode were set to INPUT, that pin could be used to

read the input voltages sent to the microcontroller by a button or sensor.)

o The loop function is where all the action of this sketch is located. By default, this function will loop over and

over and over – forever and ever. If you take a look at the code within this function, you can probably get a

sense of what it is trying to do. The first line reads:

digitalWrite(13, HIGH);

or

digitalWrite(led, HIGH);

which simply sets the LED pin (i.e., pin 13) to a high voltage. This is computer-speak for sending the maximum

voltage to the LED pin, causing the onboard LED to illuminate in this example. In the case of the Teensy 3.2 and

Arduino Due boards, the maximum voltage that can be output to any pin is 3.3 volts (or 3.3V).

The next line of code reads:

delay(1000);

This line delays, or pauses, the execution of a sketch for 1000 milliseconds, which is equivalent to one second.

Therefore, the first two lines of the loop function turn on the onboard LED for one second.

The next two lines turn off the LED:

digitalWrite(13, LOW);

delay(1000);

or

digitalWrite(led, LOW);

delay(1000);

Setting the LED pin to LOW simply means setting the voltage of that pin to the minimum value of zero volts (or

0V). Because the LED pin is no longer “receiving” a voltage, the light from the LED is extinguished. Convince

yourself that the second delay of 1000 milliseconds is necessary. Without it, can you predict what would

happen? Remember that the loop function loops forever!

Alter the Code so the LED Blinks Faster

You’ll learn much more about each of the commands in the Blink sketch in the coming chapters. For now, have some fun and

mess around with the blinking rate by changing the delay values. Alter the length of the pauses so the LED will flash on for a

tenth of a second and off for a tenth of a second. Can you figure out how to do this on your own? It is helpful to note that a

tenth of a second is equivalent to 100 milliseconds. Go ahead and change the code – you’re not going to hurt anything! If you

get stuck, my solution can be found below.

Arduino Due code

Teensy 3.2 code

Arduino Due code

Teensy 3.2 code

Teensy 3.2 code

Arduino Due code

 Physical Computing & Robotics with the Arduino IDE – Volume One

18

One way to make the onboard LED blink more rapidly is with the altered the code inside the loop function as follows:

void loop() {

 digitalWrite(led, HIGH);

 delay(100);

 digitalWrite(led, LOW);

 delay(100);

}

By decreasing the length of the delays that the LED is on and off, the light will blink more rapidly. If you haven’t done so already,

alter your code and examine your development board. You may be surprised to see that your onboard LED is not blinking

rapidly! The reason for this is profound: you have changed the code, but you have not uploaded the altered code on your

microcontroller!

Verify the Code – A Good First Check

To get the code from the Arduino IDE window to your microcontroller sitting on the desk, you must first compile the code into

machine language. Arduino calls this verifying the code, because the code needs to be checked for any errors.

Compiling – or verifying – the code is easy to do. Simply click on the Verify button at the top of the IDE, as shown in Figure xxx,

or press CTRL+R on your keyboard.

Compile your code now to verify that your sketch is error free, either by pressing the Verify button or pressing CTRL+R on your

keyboard. If you correctly followed all of the above steps, you should see a “Compiling sketch…” message and a green or blue

progress bar below the code window, as shown in Figure xxx below. The first time you compile any new sketch to your

microcontroller it will require a number of seconds to verify the code. Anytime you alter your code, you should verify that your

changes or additions are error free. Verify your code often; you’ll be happy that you do!

Figure xxx. Press the Verify button (or press CTRL+R on the keyboard) to

compile the code on the Arduino IDE into machine language.

Figure xxx. The progress bar indicates the progress of the compile (verify) operation.

Chapter 1. Getting Started with Physical Computing

19

Debugging Any Errors

The Arduino software will not compile any code that contains errors, so if the sketch does contains errors the programmer must

debug the code. A fault in one’s code is highlighted by the IDE in a number of ways. For example, in the Blink sketch above,

let’s say that you mistakenly entered the line:

delay(i00);

That is, you typed i00, instead of 100. Of course, this will confuse the compiler and it will tell you so. Compiling this code will

yield three error messages: The offending line of code will be highlighted in red, and the error message, “ 'i100' was not declares

in this scope ” will appear in both the red Message Area and in the black Text Console, as shown in Figure xxx.

To make these error messages disappear, simply fix your mistake (that is, change i00 to 100) and recompile your code. It’s

that easy.

In the coming chapters, don’t be dismayed when your code contains errors! All programmers – novices and experts alike –

typically spend as much time writing code as they do debugging code. It’s a part of programming – get used to it!

Figure xxx. Any errors in your code will be highlighted after the code is compiled.

The neat thing about this compile/verify step is you do not need to a microcontroller to test the

code. That is, you can write and test (compile) your code without having to connect a development

board to your computer! This is especially handy when you become a more experienced and

proficient programmer. It may not be too helpful for the beginner, because without the development

board, you are unable to see any output from the code. In other words, while you can check to see if

there are any errors in the code, without a development board the sketch won’t do anything.

However, when a development board is plugged in, you will know the code will compile without

errors.

 Physical Computing & Robotics with the Arduino IDE – Volume One

20

Upload the Code to your Microcontroller

Warning! It is important that you do not unplug your development board during the next few steps. Read this section

carefully, especially the part that explains when it is okay to unplug your microcontroller from your computer.

Now that you have verified and compiled your sketch, it is time to upload your code to the development board. That is, you

are about to move the coded instructions from your Arduino IDE window to the microcontroller sitting on your desk. To make

this happen, simply click on the Upload button at the top of the IDE, which is shown in Figure xxx. Or you can press the shortcut

CTRL+U keys on your keyboard. The Arduino IDE will do all the heavy lifting!

As the code is being uploaded to your development board, it will be compiled yet again. You will see the same

progress bar that you saw when you verified the code in the previous step. (See Figure xxx.) Uploading code to the

development board may require a number of seconds to compile the code and send it over to your board. Be patient

here! While your sketch is in the process of uploading to the microcontroller – that is, when the progress bar is

showing – never, ever unplug the device from your computer. You must also never press the Upload button while

the progress bar is showing! Interrupting the two-way communications during an upload can actually destroy your

board and you will have to buy a new one. Seriously, be patient!

Examine Your Handiwork

Examine your development board now. If you see the onboard LED blinking rapidly every 0.2 seconds, you will know that the

altered code for the new Blink sketch was properly uploaded to your development board. Cool, huh! (See Figure xxx for the

location of the LEDs on your particular board.) If the LED is not blinking rapidly, check your code and ensure your delays are

each 100ms long, and try uploading your code once again – but only if it is safe to do so, as explained above!

Feel free to play around and further alter the LED delay times. Can you make the LED blink even more rapidly? Can you turn it

on for a short period of time and off for a longer period? Have some fun – you can’t hurt anything!

Figure xxx. To compile your code into machine language and upload it to your development

board, press the Upload button as indicated.

Figure xxx. It is critical that you never unplug your microcontroller or press the upload button

again while the progress bar is showing! Doing so could destroy your microcontroller!

Figure xxx. If you see the flashing amber LED, you can relax, for you are set up and ready to go!

Chapter 1. Getting Started with Physical Computing

21

Amazing Stuff!

Take a moment to think about what just happened here. When you pressed the Upload button many things were set in motion,

but the bottom line is a computer program was used to turn on and off an LED – a physical, real-world device! Computer code

– some abstract arrangement of words on a computer screen – was used to control an actual object. This is amazing!

Once the compiled sketch is loaded into the microcontroller’s memory, your computer is no longer needed. The code resides

in your microcontroller’s memory, and it will run whenever it is powered up. Your computer is no longer part of the equation.

Of course, if your board is probably getting power from your computer’s USB cable, the computer is still an important

component! If you have a battery pack for your development board or a USB wall charger, test this by unplugging the USB cable

from your computer and plug it into the wall charger or connect the battery pack. You should see the LED blinking even though

it is not connected to the computer!

Upload Considerations

Always, always, always be patient until the code has finished uploading! After the sketch has been properly uploaded to the

development board, the progress bar will disappear and the programming window will display a “Done uploading” message an

information about the memory allocation on the microcontroller, as shown in Figure xxx below. If the volume to your

computer’s speakers is turned up, you will also hear some electronic sounds, which indicate the code has been uploaded.7

Teensy 3.2 users should make one final check before proceeding. When the Upload button is pressed and the code is compiled,

Teensy users will also see the Teensy Loader window pop up, shown in Figure xxx. The Teensy Loader is a program that takes

code written for an Arduino board and translates it into code for the Teensy. You don’t need to do anything with this window,

but you should wait for it to tell you that the code has been translated and has finished uploading to the Teensy microcontroller.

You can tell when this has happened because the Teensyduino window goes from looking like the one in Figure xxx to the one

in Figure xxx. Only when you see the window in Figure xxx do you know that the code is safely uploaded and only then may

you proceed.

7 To help ensure my students do not destroy their development boards, I encourage them to unmute their computer speakers

and listen for the tell-tale computer sound that is generated when the sketch has been being successfully loaded onto the board.

Figure xxx. Once the sketch has been properly uploaded, the progress bar will disappear and the

programming window will display a “Done uploading” message. If the volume to your computer’s

speakers is turned up, you will also hear some electronic sounds indicating the code has been uploaded.

Figure xxx. Teensy users will see the Teensy Loader

window pop up after uploading their code. This warns

the programmer know to not unplug their board and

not to re-upload the code at this time.

Figure xxx. When the code has been successfully

downloaded to the Teensy, the Teensy Loader window

will look like this. It is now safe to unplug your board

or re-upload the code.

 Physical Computing & Robotics with the Arduino IDE – Volume One

22

When I program my Teensy, I make sure that my code window is resized so that I always can see the Teensy Loader window.

Even though you don’t need to do anything with this window, keep it visible so you can easily monitor the status of your upload

operations. Don’t bother closing the Teensy Loader window because it will just re-open any time you upload new code.

The window also serves as a reminder that you may need to press the physical reset button on top of your Teensy for the code

to upload, as shown in Figure xxx. You should only have to do this once for each new program. Any time you upload code after

that, the Teensy Loader will run and your code should automatically upload to your board.8

Putting Away Your Toys – What to Do When You Are Finished for the Day

When you are finished playing around with the onboard LED, and you are positive that no code is being uploaded to your

development board, you can safely unplug your programming cable from the computer without worrying about damaging your

microcontroller. Even though a program is running on your development board and the LED is blinking, it is safe to unplug the

board. After the sketch has been uploaded, the only thing the computer is doing is providing power to the development board.

It is important to reiterate here that if code is in the process of being uploaded, you must not unplug the

development board from the computer!

If you decide to unplug the programming cable from the development board, take care that you pull the cable out

horizontally, never at an angle! Because the tiny micro-USB socket is not meant to withstand a lot of force, it is easy

to pry the socket off of the board! Be kind to your board, and it will be kind to you!

Usually, when you are finished programming for the day, you would save your sketch just as you would save a Word document.

However, because the Blink sketch was a built-in example program do not save any changes made to the sketch. Simply close

the Arduino IDE without saving the sketch.

1.7. Details about Microcontrollers for Serious Programmers

In this optional section, I explain in more detail what is actually happening when the Upload button is pressed. I will also talk

in more detail about the differences of a variety of microcontrollers and development boards, and why the ARM processors are

the focus of this book. Finally, I will discuss the advantages and disadvantages to using the Teensy 3.2 and Arduino systems. If

you would like to skip this section and jump straight to the Challenge problems at the end of this chapter, feel free to do so.

However, if you have a desire to become a more knowledgeable and serious microcontroller programmer, you may want to

take a few minutes (now or later) to read this section.

A Look behind the Scenes

The focus and intent of the book are to teach you about physical computing using the Arduino programming language. The

Arduino language is based on the common and powerful C language and embedded controllers can be programmed using the

Arduino IDE or integrated development environment. Regardless of what development board you have elected to use, all

8 If there is ever an interruption of the serial communications, you will be instructed to press the reset button.

Figure xxx. In order to upload a new sketch to the

Teensy development board, the user may need to press

the reset button on the Teensy itself.

Chapter 1. Getting Started with Physical Computing

23

Teensy and Arduino boards can be programmed with the Arduino IDE. You will use this programming software to create all the

sketches in this book.

While it is not necessary that you understand the details of how sketches go from the IDE to the development board, it is useful

to understand the general process by which your code moves from the computer to the microcontroller. It’s actually not that

complicated; here is the general idea:

1. A sketch is created by writing easy-to-read code within the Arduino IDE. The sketches are saved to a drive on your

computer with the .ino file extension.

2. When the sketch is complete, pressing the Upload button takes your program and compiles (translates) it into binary

(hex) machine language. Machine language is the only language that machines understand, but it cannot be read by

ordinary humans. The binary version of your code is sent (uploaded) from your computer to your development board

via the USB programming cable.

3. The microcontroller on the development board then uses a bootloader to store the new binary file in the memory

space allocated for program storage on the chip.

4. At this point, your sketch resides on the microcontroller and can run independently of your computer. In other words,

you can remove the development board from the computer and your program will run, provided the board is powered

with batteries or some other voltage source.

5. Now, any time the boards are powered up, the code will run even when it is disconnected from your personal

computer! Your microcontroller has the potential to become a very powerful tool, capable of operating on your dining

room table, at the bottom of the ocean, or even in the far reaches of space! Are you ready to begin?

What is under the Hood of your Development Board?

Anyone serious about microcontroller programming needs to know a bit more of what’s under the hood before proceeding. At

the center of every microcontroller is the CPU or processor. There are a number of processors on the market, but the PIC, AVR,

and ARM microcontrollers are at the top of the heap. Programming these tiny chips from scratch takes a lot of electronics

know-how and therefore isn’t suited for an introductory course.

To make it easier to use and program these processors, some companies have designed their own circuit boards to make it

easier to communicate with the tiny chips. As you have learned, these boards are known as development environments or

development boards. Some common development boards include the BX-24, Basic Stamp, Teensy 2.0, Teensy 3.2, Arduino

Uno, and Arduino Due. Figure xxx shows some of these boards and which processors they use.

For a long while now, the AVR processor has been king. The Arduino Uno and Teensy 2.0 development boards both use AVR

processors and have done a remarkable job galvanizing the maker movement and popularizing the field of home robotics and

embedded controllers. But the AVR’s days are numbered as the more advanced and powerful ARM processors grow in

popularity. This book is written around the Teensy 3.2 and Arduino Due development boards, which use the new and more

powerful ARM processors. While a great deal of what is covered in this text will apply directly to AVR-driven development

boards such as the Teensy 2.0 and Arduino Uno, all of my code examples, diagrams, and images are with the Teensy 3.2 and

Arduino Due in mind, with my personal preference for the Teensy 3.2.

Figure xxx. Counterclockwise from the bottom left: NetMedia’s BX-24, Arduino Uno, Arduino Due, and PJRC’s Teensy 3.2.

The BX-24 and Uno use the AVR processor. The Due and Teensy 3.2 use the more powerful ARM processor.

 Physical Computing & Robotics with the Arduino IDE – Volume One

24

For those of you with an AVR-based chip, most of what is covered in this text will apply to your board.

I will do my best to point out when the lessons don’t apply to you. When you see the red ARM button

shown at the left, you’ll know the material covered in that section may not work for your board.

Besides having faster and more powerful processors, the biggest difference between ARM and AVR is

their voltages. The older AVR chips operate on 5.0V, while the new, more efficient ARM chips require

only 3.3V. It is important to realize that some of the older 5-volt sensors and actuators may damage

your 3.3-volt ARM board. This will be discussed in more detail in subsequent chapters.

Some of these development boards, like the Arduino Due shown in Figure xxx, include all the electronics required to handle

communications between the onboard microcontroller and your computer, as well as a variety of I/O ports. Others, like the

Teensy 3.2 shown in Figure xxx work best with a third party motherboard, such as the PRT3 from Patton Robotics to handle the

communications between your computer and the Teensy and allow it to interact with sensors, lights, and motors. Figure xxx

shows the Teensy 3.2 development board with PRT3 Motherboard.

The Pros and Cons Teensy 3.2 and Arduino Due Development Boards

This book was written for the Arduino Due and Teensy 3.2 development boards, shown in Figures xxx and xxx, respectively.

While you can do everything in this textbook with either controller, for some things the Teensy is better and for others the Due

is better. Below I try to give a fair and candid assessment of both boards.

Pros and Cons of the Arduino Due

• The Arduino Due is a development board that includes all the electronics required to handle communications between

the onboard microcontroller and your computer, as well as a variety of I/O (input/output) ports. This board has the

advantage of an all-inclusive package. The microcontroller, development board, and motherboard come bundled

together; there is no need to buy an additional motherboard. Unfortunately, this means the Due is over twice the cost

of the Teensy 3.2. Another disadvantage of the all-in-one-system is that if the microcontroller is destroyed (which can

happen with beginners), you have to throw the entire thing away rather than simply replacing the controller.

• Another advantage of the Due is that right out of the box, you can easily connect individual wires to the board with no

need of additional hardware. While it is possible use a system of individual connectors and jumper wires to attach

components to the base Due development board, a disadvantage to using these wires is that they are easily pulled out

and do not make for a very robust system.

Figure xxx. The Teensy 3.2 development board mated with the

PRT3 Motherboard from Patton Robotics. The PRT3 makes it easy

to connect components and battery packs to the microcontroller.

Figure xxx. The Arduino Due development board.

AAAARRRRMMMM

Figure xxx. Single connector wires are easily unplugged and

create a mess of all but the most rudimentary of projects.

Chapter 1. Getting Started with Physical Computing

25

• One of the biggest advantages of the Due (and all Arduino systems, for that matter) is that it requires only the Arduino

IDE software to run properly. (Teensy users need an additional piece of free software, called the Teensyduino, which,

as you know, allows the Arduino IDE to communicate with Teensy development boards.)

• Another advantage of the Arduino systems is how easy it is to connect one or more add-on boards, or shields as

Arduino calls them, to the base Due board, as shown in Figure xxx. Shields perform one or more functions and can be

purchased from Arduino or from third-party vendors. For example, you can control a motor, read signals from a GPS

satellite, and output data to an LCD screen by plugging in a motor shield, GPS shield, and LCD shield. However, this

“advantage” is more of a disadvantage because the financial cost of adding shields to your project can be high. While

the number of available shields is impressively large, in order to do anything but the most rudimentary of tasks requires

one or more shields, and the cost and physical size of the project can grow rapidly. For example, the addition of the

motor, GPS, and LCD shields will cost you an additional $85-$100, which is too much to spend for many hobbyists and

educators, simply to attach a few components.

• Another disadvantage of the Due is that there is no off/on power switch to the board. To turn off the board, or to turn

off power to connected servomotors, for example, you are forced to unplug the battery pack or programming cable.

This gets annoying after a while.

• Finally, the Due has the advantage of coming pre-assembled with nice and tiny surface mounted components. You

pull it out of the box and you are ready to go! The disadvantage of this is those do-it-yourselfers do not have the

opportunity to put the board together from a kit. As an educator, I find this especially upsetting because the soldering

and building of the motherboards is a task students generally enjoy and take great pride in doing.

Photo credit: xxx John Boxall and

www.freetronics.com

Figure xxx. Shields seem like a good idea until you consider how

much they cost, how much space they take up, and how much board

resources they consume.

Figure xxx. Professionally made motherboards with surface

mounted components are nice, but they prevent the DIY-er from

building the motherboard from scratch.

 Physical Computing & Robotics with the Arduino IDE – Volume One

26

Pros and Cons of the Teensy 3.2/PRT3 Combo

• The Teensy 3.2 is a powerful plug-and-play development board with the same powerful ARM processor as the Arduino

Due. One main advantage of this board is the fact that it can be used as is or it can be inserted into a motherboard.

The disadvantage of not being part of an all-inclusive controller is outweighed, in my opinion, with the flexibility of

being able to use the Teensy as a stand-alone controller (you can build the Teensy directly into your projects) or in

conjunction with a third-part motherboard, such as the PRT3 from Patton Robotics. This has the added advantage of

being able to cheaply and easily replace the microcontroller in the event it is damaged or destroyed, which, as I

explained above, is not possible with the Arduino Due.

• The biggest advantage that the Teensy 3.2 has over any of the Arduino boards is being able to use the Patton Robotics

PRT3 Motherboard. This versatile and inexpensive motherboard was designed specifically for the Teensy 3.2 and is

much more user friendly than any of the Arduino boards. The connectors of the PRT3 allow for 3-wire connectivity,

meaning common servos and sensors can easily be plugged directly into the motherboard without needing to purchase

expensive and unwieldy shields that are required by Arduino systems. This is a huge advantage that Teensy has over

Arduino and cannot be overstated. I can find no disadvantage to using the PRT3 Motherboard over the Due board,

other than the fact of having to purchase another piece of hardware. The cost of purchasing the Teensy/PRT3 combo

is the same or even less expensive as buying the Due.

• Another advantage of the PRT3 Motherboard is that it comes with two power switches. When disconnected from the

computer and running on battery power, one of the power switches can be used to control power to one half of the

board, allowing you for example, to turn on and off power to servomotors. The other switch can be used to turn on

or off power to the microcontroller – the ultimate kill/reset switch. When the board is connected to the computer via

the USB programming cable, the power switch that controls half of the board (for example, servomotors) can be

utilized. This is handy when you want the robot brain and sensors to continue to function, but don’t want the robot’s

wheels to spin.

• One disadvantage of using the Teensy 3.2 (and all Teensy boards, for that matter) is that it requires an additional piece

of free software, called the Teensyduino, to be installed. The Teensyduino allows the Arduino IDE to communicate

with Teensy development boards. This is only an issue at the beginning when software is being installed for the first

time. After that, the software runs in the background, practically unnoticed. There is no advantage to using a system

that requires the Teensyduino.

Figure xxx. The PRT3 Motherboard from Patton Robotics makes it super-

easy to connect a multitude of sensors and actuators with 3-wire cables,

while providing just as many single-wire female ports as the Arduino board.

Figure xxx. The PRT3 Motherboard allows the user to turn on and off power

to both side of the motherboard.

Chapter 1. Getting Started with Physical Computing

27

• Finally, the Teensy/PRT3 Motherboard combo has the advantage of either product coming pre-assembled or as a do-

it-yourself kit. As an educator, I find that having students solder their own boards is an educational and empowering

lesson. Students acquire a valuable skill, take pride in their work, and enjoy the experience.

My Conclusions

Despite the popularity of the Arduino development boards, I much prefer the combination of the Teensy 3.29 with the versatile

Patton Robotics PRT3 Motherboard, shown in Figure xxx.10 In the classroom you can’t beat the Teensy/PRT3 combination for

ease of use and durability.

Brian Patton, the President and CEO of Patton Robotics and creator of the PRT3 Motherboard, has over 20 years of experience

designing, building, and manufacturing robots for the sole purpose of educating children and adults in the exciting world of

robotics and physical computing. The products his company sells and manufactures are durable enough for rowdy, untrained

middle school students, yet sophisticated enough for polished students at Ivy League universities. I am so excited about the

educational systems of Patton Robotics that I have written two books around their educational robot platforms.

Fortunately for users of either Arduino or Teensy systems, Patton Robotics has designed a well-made and robust robot platform

for hobbyists, educators, students, and professionals, alike. Known as the OneBot, this chassis with over 50 tapped and 12

clearance holes gives the user a solid platform to connect motherboards (both the PRT3 and Arduino mount on the chassis),

secure motors (servo and steppers), mount sensors, add additional decks, and secure battery packs. This versatile robot

platform is showcased in Volume Two of this text.

While I believe the Teensy 3.2/PRT3 Motherboard combination is the best option for classroom instruction, this book will

also show how to use the Arduino Due board as the brain and central nervous system of your physical computing devices.

1.8. Congratulations and a Challenge

Congratulations! Your equipment is all setup, and you are now ready to dive into the wonderful world of physical computing

and robotics with your embedded microcontroller! The best way to reinforce what you just learned is to put it into practice.

At the end of every chapter you’ll find Challenge Problems for that purpose. Students using this book in a classroom setting

may find that their teacher has already assigned some of these problems for them to do. For the hobbyist I also recommend

trying to work some of the problems. Even if you think you understand the material, you won’t know you do until you practice.

If you are a teacher and would like to follow the syllabus I have created for my Computer Programming & Robotics students at

George School, see Appendix xxx – George School Robotics Classwork Timeline. Here you can see all the Challenge Problems I

have assigned to the students who self-select themselves as either Intermediate or Intensive level. Additionally, the syllabus

points my students to a variety of additional reading assignments, descriptions or required and optional projects, and

interesting readings and Internet links. Feel free to use my syllabus for your own classroom instruction, and contact me if you

have ideas and suggestions for ways I can improve it!

9 Teensy 3.2 development board is the creation of Paul J Stoffregen of PJRC.com, LLC, and uses the powerful 32-bit MK20DX256VLH7

microcontroller as its brain. For more information, see www.pjrc.com/
10 The PRT3 Motherboard is the brainchild of Brian Patton of Patton Robotics, LLC of New Hope, Pennsylvania. Visit

http://pattonrobotics.com for more information.

Figure xxx. Students find it enjoyable and rewarding to

build their motherboards from scratch.

 Physical Computing & Robotics with the Arduino IDE – Volume One

28

Challenge Problems

Your instructor may want you to turn in written work for these Challenge Problems, or they may prefer to check your solutions

in person. The first nine problems are probably best turned in as written work.

1-1. What does the term “IDE” stand for and, more importantly, what is it used for? What is the name of the IDE that you

will be using?

1-2. What is the name of the computer language that will you use to program your microcontroller? What is the famous

language on which this is based?

1-3. What are three advantages that ARM microcontrollers (processors) have over the AVR microcontrollers? Which

processor is embedded on your development board?

1-4. What is the name of the development board are you using? If you are using a motherboard, what is its name and who

makes it?

1-5. List three advantages and three disadvantages of your development board over the competitor.

1-6. True or False. You can only use an Arduino development board when programming with the Arduino IDE.

1-7. True or False. The Arduino IDE runs equally well on a PC, Mac, or Linux machine.

1-8. What role does the personal computer play in the world of physical computing?

1-9. When is it permissible to disconnect your development board from your computer? More importantly, when should you

never unplug your development board from your computer? This question is so important, I’ve given you the answer in

the warning message box below!

1-10. In this chapter you learned how to load the Blink example sketch and change the blinking frequency of the onboard LED.

Alter the code once again so the LED is on for 50ms and off for 700ms.

1-11. In this chapter you learned how to load the Blink example sketch and change the blinking frequency of the onboard LED.

Alter the code once again so the LED is on for 1.5 seconds and off for 0.5 seconds.

1-12. In this chapter you learned how to load the Blink example sketch and change the blinking frequency of the onboard LED.

Watch this YouTube video https://youtu.be/t1E7XuT3HVE of my blinking LED and alter the code of the Blink example

sketch to reproduce my blinking frequency on your own development board. I’ll give you a hint: the on and off delays

are both multiples of 10ms.

NEVER unplug your development board from your computer

while your sketch is compiling and uploading to your device!

Interrupting the two-way communication during an upload will permanently disable

your board and will have to buy a new one.

You will know that the code is finished uploading when the progress bar (shown above)

disappears. I recommend that you also turn on your computer speakers and listen for

the tell-tale computer sound that is generated when the sketch has been being

successfully loaded onto the board.

Chapter 1. Getting Started with Physical Computing

29

1-13. The following Challenge Problem is meant to reinforce what you just learned and introduce you to what is to come in

the next chapter.

A. To begin, whether you are using an Arduino or a Teensy development board, select the proper serial port by

clicking Tools >> Serial Port from the menu bar, and choose the appropriate serial communications (COM) port,

as shown in the figures below.

• On a Windows machine, the serial (COM) port is usually auto-detected for you, but check to make sure.

Do not select COM1, which is reserved for other functions. It will not work with your microcontroller. If

the only serial port showing is COM1, something is wrong. See “Troubleshooting the Serial Connection”

below.

• On a Mac, it may take some trial and error to locate the right port. Look for something like

dev/cu.usbserial… or /dev/cu…WirelessiAP in the name as shown in Figures xxx and xxx. If you are

unable to find the correct serial port, see “Troubleshooting the Serial Connection” below.

B. Next, open the example sketch named ASCIITable from the example library file found by following this path:

File > Examples >> 04.Communication >> ASCIITable.

Figure xxx. Setting the Serial Port on a Windows machine.

Figure xxx. Another typical Serial Port setting on a Mac.
Photo credit: Youssef Emam.

Figure xxx. A typical port setting the Serial Port on a Mac machine.
Photo credit: Tianyi “Martin” Ma.

 Physical Computing & Robotics with the Arduino IDE – Volume One

30

C. Now upload the ASCIITable code to your board in the usual way. You will find that once the program is running

it will seem as if nothing is happening. To see the sketch’s output, you must first press the Serial Monitor button

shown in Figure xxx below.

D. The Serial Monitor window should pop up. If you have a Teensy board, your Serial Monitor should be filled with

ASCII characters and the corresponding decimal, hexadecimal, octal, and binary codes, shown in Figure xxx.11 If

you have an Arduino board, you may see a bunch of random characters scroll across the screen. To fix that,

simply change the baud rate (located at the lower right corner of the Serial Monitor window) to 9600 as shown

in Figure xxx.

Don’t worry about what the symbols and numbers mean right now; it will make more sense soon enough. This question

was meant to test your ability to open and upload a new sketch to your development board. Once you see ASCII Table

in the Serial Monitor, you are finished with the problem.

Troubleshooting the Serial Connection

11 ASCII stands for American Standard Code for Information Interchange, and is pronounced, “ask-ee”.

Figure xxx. To view the program’s output, press the Serial

Monitor button after uploading the sketch.

Figure xxx. The Serial Monitor Window showing proper

output from the ASCIITable sketch. Arduino users may

need to change the baud rate to 9600 as shown.

Troubleshooting the Serial Connection.

If the serial port for your device is not present, don’t fret, for this happens a lot! Try the following:

1. Close the Arduino software and try again.

2. Unplug the USB programming the cable and plugging it in to the

same port again.

3. Close the Arduino software. Unplug the USB programming cable

and plug it into another USB port. Make sure you give the computer

time to recognize the board! Restart Arduino.

